Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Yi-Hang Wen ${ }^{\text {a,b }}$ * and Yun-Long Feng ${ }^{\text {a }}$

${ }^{\text {a }}$ Institute of Physical Chemistry, Zhejiang Normal University, Jinhua, Zhejiang 321004, People's Republic of China, and ${ }^{\mathbf{b}}$ The State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, The Chinese Academy of Sciences, Fuzhou, Fujian 350002, People's Republic of China

Correspondence e-mail:
wenyihangfj@yahoo.com.cn

Key indicators

Single-crystal X-ray study
$T=130 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.019$
$w R$ factor $=0.046$
Data-to-parameter ratio $=21.9$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

Dichlorobis(pyridinium-2-thiolato)cadmium(II)

The title compound, $\left[\mathrm{Cd}\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{NS}\right)_{2} \mathrm{Cl}_{2}\right]$, was prepared by the self-assembly reaction of isophthalic acid, $\mathrm{CdCl}_{2} \cdot 5 \mathrm{H}_{2} \mathrm{O}$ and pyridine-2-thiol in methanol $/ \mathrm{H}_{2} \mathrm{O}$. The $\mathrm{Cd}^{\mathrm{II}}$ atom lies on a twofold axis and is tetrahedrally coordinated by two S atoms from two pyridinium-2-thiolate ligands and two Cl atoms. Molecules are linked by $\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bonds to form sheets parallel to the $b c$ plane.

Comment

The coordination chemistry of the pyridine-2-thiol ligand with transition metals has undergone extensive development in recent years owing to its abundant coordination ability. The pyridine-2-thiol ligand can coordinate both in the 'thiolate' and the tautomeric 'thione' forms and it has several binding modes, for instance, monodentate, bidentate chelating, bidentate bridging and doubly bridging. Recently, some coordination polymers constructed from pyridine-2-thione (or pyridinium-2-thiolate) have been reported (Lobana et al., 2000; Hong et al., 1999; Berardini et al., 1997). We report here the synthesis and crystal structure of the title mononuclear cadmium(II) compound, (I).

(I)

As shown in Fig. 1, the Cd atom in (I) lies on a twofold axis and is coordinated by two S atoms from two pyridinium-2thiolate ligands and two Cl atoms in a distorted tetrahedral geometry, with $\mathrm{Cd}-\mathrm{S}$ and $\mathrm{Cd}-\mathrm{Cl}$ distances of 2.5172 (9) and 2.4730 (9) \AA, respectively. The title compound is isostructural with the Co analog, $\left[\mathrm{Co}\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{NS}\right)_{2} \mathrm{Cl}_{2}\right]$ (Binamira-Soriaga et al., 1979).

Figure 1
A view of the structure of (I), showing 50% probability displacement ellipsoids [symmetry code: (i) $-x, y, \frac{1}{2}-z$].

Received 7 March 2005 Accepted 24 March 2005 Online 31 March 2005

Figure 2
Packing diagram of (I), showing the two-dimensional hydrogen-bonded structure. H atoms not involved in hydrogen bonding have been omitted and the hydrogen bonds are shown as dashed lines.

In the crystal structure, there are $\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bonds involving the protonated N atoms and the Cl atoms from symmetry-related molecules (see Table 2). As shown in Fig. 2, molecules are linked by these interactions to form twodimensional sheets parallel to the $b c$ plane.

Experimental

The title compound was prepared by mixing a $1: 1$ molar ratio of isophthalic acid $(0.083 \mathrm{~g}, 0.5 \mathrm{mmol})$ and $\mathrm{CdCl}_{2} \cdot 5 \mathrm{H}_{2} \mathrm{O}(0.114 \mathrm{~g}$, $0.5 \mathrm{mmol})$ in a solution of $\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}(3: 2 v / v, 25 \mathrm{ml})$. The solution was stirred at 333 K for 30 min , pyridine-2-thiol $(0.056 \mathrm{~g}, 0.5 \mathrm{mmol})$ was added and the resulting mixture stirred for a further 1 h . The reaction mixture was filtered and colorless single crystals suitable for X-ray analysis were obtained by slow evaporation of the solvent.

Crystal data

$\left[\mathrm{Cd}\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{NS}\right)_{2} \mathrm{Cl}_{2}\right]$
$M_{r}=405.62$
Monoclinic, $C 2 / c$
$a=9.364$ (4) \AA 。
$b=11.445$ (4) \AA
$c=13.597$ (6) \AA
$\beta=108.46(2)^{\circ}$
$V=1382.1(10) \AA^{3}$
$Z=4$

Data collection

Bruker SMART CCD
diffractometer
ω scans
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.515, T_{\max }=0.836$
5486 measured reflections
$D_{x}=1.949 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 2053 reflections
$\theta=2.9-28.3^{\circ}$
$\mu=2.25 \mathrm{~mm}^{-1}$
$T=130$ (2) K
Prism, colorless
$0.50 \times 0.25 \times 0.08 \mathrm{~mm}$

1709 independent reflections
1659 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.020$
$\theta_{\text {max }}=28.3^{\circ}$
$h=-12 \rightarrow 6$
$k=-15 \rightarrow 15$
$l=-16 \rightarrow 18$

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& w=1 /[\sigma^{2}\left(F_{o}^{2}\right)+(0.0221 P)^{2} \\
&+1.6413 P] \\
& \text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }=0.002 \\
& \Delta \rho_{\max }=0.67 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.65 \mathrm{e} \AA^{-3}
\end{aligned}
$$

Table 1
Selected geometric parameters ($\left(\AA^{\circ}\right)$.

$\mathrm{Cd} 1-\mathrm{Cl} 1$	$2.4730(9)$	$\mathrm{Cd} 1-\mathrm{S} 1$	$2.5172(9)$
$\mathrm{Cl} 1^{\mathrm{i}}-\mathrm{Cd} 1-\mathrm{Cl} 1$	$110.87(4)$	$\mathrm{Cl} 1-\mathrm{Cd} 1-\mathrm{S} 1$	$108.11(3)$
$\mathrm{Cl} 1^{\mathrm{i}}-\mathrm{Cd} 1-\mathrm{S} 1$	$112.83(2)$	$\mathrm{S} 1-\mathrm{Cd} 1-\mathrm{S} 1^{\mathrm{i}}$	$103.97(4)$
Symmetry code: $(\mathrm{i})-x, y \cdot \frac{1}{2}-z$			

Symmetry code: (i) $-x, y, \frac{1}{2}-z$.

Table 2
Hydrogen-bonding geometry ($\mathrm{A},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 \mathrm{~B} \cdots \mathrm{Cl} 1^{\mathrm{ii}}$	0.86	2.30	$3.1487(18)$	171

Symmetry codes: (ii) $\frac{1}{2}+x, \frac{1}{2}+y, z$.
All H atoms were included in calculated positions and refined using the riding-model approximation $[\mathrm{C}-\mathrm{H}=0.93 \AA, \mathrm{~N}-\mathrm{H}=$ $0.86 \AA$ and $\left.U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C}, \mathrm{N})\right]$.

Data collection: SMART (Siemens, 1996); cell refinement: SMART and SAINT (Siemens, 1994); data reduction: SAINT and XPREP in SHELXTL (Siemens, 1994); program(s) used to solve structure: SHELXTL; program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

This project (No. 20030710) was supported by the Education Department of Zhejiang Province.

References

Berardini, M., Lee, J., Freedman, D., Lee, J., Emge, T. J. \& Brennan, J. G. (1997). Inorg. Chem. 36, 5772-5776.

Binamira-Soriaga, E., Lundeen, M. \& Seff, K. (1979). Acta Cryst. B35, 28752879.

Hong, M., Su, W., Cao, R., Zhang, W. \& Lu, J. (1999). Inorg. Chem. 38, 600602.

Lobana, T. S., Verma, R., Hundal, G. \& Castineiras, A. (2000). Polyhedron, 19, 899-906.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Siemens (1994). SAINT and SHELXTL. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Siemens (1996). SMART. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

